Random Walks and Neural Network Language Models on Knowledge Bases
نویسندگان
چکیده
Random walks over large knowledge bases like WordNet have been successfully used in word similarity, relatedness and disambiguation tasks. Unfortunately, those algorithms are relatively slow for large repositories, with significant memory footprints. In this paper we present a novel algorithm which encodes the structure of a knowledge base in a continuous vector space, combining random walks and neural net language models in order to produce novel word representations. Evaluation in word relatedness and similarity datasets yields equal or better results than those of a random walk algorithm, using a dense representation (300 dimensions instead of 117K). Furthermore, the word representations are complementary to those of the random walk algorithm and to corpus-based continuous representations, improving the stateof-the-art in the similarity dataset. Our technique opens up exciting opportunities to combine distributional and knowledge-based word representations.
منابع مشابه
Convolutional Neural Network Based Semantic Tagging with Entity Embeddings
Unsupervised word embeddings provide rich linguistic and conceptual information about words. However, they may provide weak information about domain specific semantic relations for certain tasks such as semantic parsing of natural language queries, where such information about words or phrases can be valuable. To encode the prior knowledge about the semantic word relations, we extended the neur...
متن کاملText Understanding using Knowledge-Bases and Random Walks
One of the key challenges for creating the semantic representation of a text is mapping words found in a natural language text to their meanings. This task, Word Sense Disambiguation (WSD), is confounded by the fact that words have multiple meanings, or senses, dictated by their use in a sentence and the domain. We present an algorithm that employs random walks over the graph structure of knowl...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملBilingual emb e ddings with random walks over multilingual wordnets
Bilingual word embeddings represent words of two languages in the same space, and allow to transfer knowledge from one language to the other without machine translation. The main approach is to train monolingual embeddings first and then map them using bilingual dictionaries. In this work, we present a novel method to learn bilingual embeddings based on multilingual knowledge bases (KB) such as...
متن کاملمدیریت ریسک اعتباری در نظام بانکی رویکرد مقایسه ای تحلیل پوششی داده ها و شبکه عصبی
This research has been done with the aim of identification of effective factors which influence on credit risk and designing model for estimating credit rating of the companies which have borrowed from a commercial bank in the one-year period by using Data Envelopment Analysis and neural network model and comparison of these two models . For this purpose, the necessary sample data on financial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015